In the Name of Science References.

Lisa Everett Andersen, B.SC. PHARM, FACA, CCN
Author, Holistic Clinical Pharmacist and Board Certified Clinical Nutritionist

Children's Health Defense https://childrenshealthdefense.org

Kennedy Jr. R. (2022). A Letter to Liberals: Censorship and COVID: An Attack on Science and American Ideals. Skyhorse Publishing.

Kennedy Jr. R. (2021). The Real Anthony Fauci: Bill Gates, Big Pharma, and the Global War on Democracy and Public Health. Skyhorse Publishing.

Kim E., Jang E., Lee J.H. (2022, Feb.). Potential roles and key mechanisms of hawthorn extract against various liver diseases. Nutrients, 14(4), 867.

Tanikawa T., Kiba Y., Yu J., et.al. (2022, Aug.). Degradative effect of nattokinase on spike protein of SARS-CoV-2. Molecules, 27(17), 5405.

Shirley B. (2022). Nitric oxide and immune health.

Shirley B. (2020). Nitric oxide and mental health.

Cedars Sinai Medical Center. (2022, July). Hypertension elevates risk for more severe COVID-19 illness.

Verkerk R., Kathrada N., Plothe C., Lindley K. (2022). Self-selected COVID-19 "unvaccinated" cohort reports favorable health outcomes and unjustified discrimination in global survey. International Journal of Vaccine Theory, Practice, and Research, 2(2), 321-54.

Thacker P. (2021). COVID-19: Researcher blows the whistle on data integrity issues in Pfizer's vaccine trial. BMJ.

ICAN. (2022). V-Safe data.

Menachemi N., Dixon B., Wools-Kaloustian K., et.al. (2021, May-June). How many SARS-CoV-2-infected people require hospitalization? Using random sample testing to better inform preparedness efforts. J Public Health Manag Pract, 27(3), 246-50.

Seneff S., Kyriakopoulos A., Nigh G., McCullough P. (2022, Aug.). SARS-CoV-2 spike protein in the pathogenesis of prion-like diseases. Authorea.

Senneff S., Nigh G., Kyriakopoulos A., McCullough P. (2022, June). Innate immune suppression by SARS-CoV-2 mRNA vaccinations: the role of G-quadruplexes, exosomes, and MicroRNAs. Food Chem Toxicol, 164, 113008.

Perez J., Moret-Chalmin C., Montagnier L. (2022). Towards the emergence of a new form of the neurodegenerative Creutzfeldt-Jakob disease: twenty six cases of CJD declared a few days after a COVID-19 "vaccine" jab. Zenodo.

Classen J. (2021). Review of COVID-19 vaccines and the risk of chronic adverse events including neurological degeneration. J Med, Clin Res & Rev, 5(3), 1-7.

Campbell M. (2022, Nov.). Australian government says vaccine risk too high for people under 30.

Watanabe S., & Hama R. (2022, Oct.). SARS-CoV-2 vaccine and increased myocarditis mortality risk: a population based comparative study in Japan. MedRxiv.

Levi N., Moravsky G., Weitsman T., et.al. (2022 Sept.). A prospective study on myocardial injury after BNT162b2 mRNA COVID-19 fourth dose vaccination in healthy persons. Eur J Heart Fail.

Choi S., Lee S., Seo J., Kim M., et.al. (2021, Oct.). Myocarditis-induced sudden death ater BNT162b2 mRNA COVID-19 vaccination in Korea: case report focusing on histopathological findings. J Korean Med Sci, 36(40), e286.

Grabbelaar L., Venter C., Vick M., Ngoepe M., et.al. (2021, Aug.). SARS-CoV-2 spike protein S1 induces fibrin(ogen) resistant to fibrinolysis: implications for microclot formation in COVID-19. Biosci Rep, 41(8), BSR20210611.

Chen Y., Xu Z., Wang P., et.al. (2022, April). New-onset autoimmune phenomena post-COVID-19 vaccination. Immunology,165(4), 386-401.

Dotan A., & Shoenfeld Y. (2021, July). Perspectives on vaccine induced thrombotic thrombocytopenia. J Autoimmun, 121, 102663.

Patrizio A., Ferrari S., Elia G., Ragusa F., et.al. (2022, Sept.). Graves' disease following SARS-CoV-2 vaccination: a systematic review. Vaccines(Basel), 10(9), 1445.

Fu P., Chen C., Hsu Y., Wei K., et.al. (2022, Sept.). A case of acquired hemophilia A and bulls pemphigoid following SARS-CoV-2 mRNA vaccination. J Formos Med Assoc, 121(9), 1872-76.

Rodriguez Y., Rojas M., Beltran S., Polo F., et.al. (2022, Oct.). Autoimmune and autoinflammatory conditions after COVID-19 vaccination. New case reports and updated literature review. J Autoimmun, 132, 102898.

Alexander P. (2021, Dec.). More than 150 comparative studies and articles on mask ineffectiveness and harms. Rhode Island Legislature.

Spira B. (2022, April). Correlation between mask compliance and COVID-19 outcomes in Europe. Cureus, 14(4), e24268.

Bonfilt. (2019, March). Mesh to micron chart.

Mikovits J., & Heckenlively K. (2021). The Truth About Masks: Exploring Theories Against Wearing Them. Skyhorse Publishing.

Da Zhou C., Sivathondan P., Handa A. (2015, June). Unmasking the surgeons: the evidence base behind the use of facemarks in surgery. J R Soc Med, 108(6), 223-28.

Orr N. (1981, Nov.). Is a mask necessary in the operating theatre? Ann R Coll Surg Engl, 63(6), 390-92.

Fohse F., Geckin B., Overheul G., van de Maat J., et.al. (2021, May). The BNT162b2 mRNA vaccine against SARS-CoV-2 reprograms both adaptive and innate immune responses. MedRxiv.

Ogata A., Cheng C., Desjardins M., Senussi Y., et.al. (2022, March). Circulating severe acute respiratory syndrome coronavirus 2 (SAS-CoV-2) vaccine antigen detected in the plasma of mRNA-1273 vaccine recipients. Clin Infect Dis, 74(4), 715-18.

Pfizer. SARS-CoV-2 mRNA vaccine (BNT162, PF-07302048) bio-distribution document via the Japanese Regulatory Agency.

Pradhan P., Pandey A., Mishra A., Gupta P., et.al. (2020, Jan.). Uncanny similarity of unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag. BioRxiv.

Mercola J. (2022, Aug.). Why are COVID patients treated with an HIV pill? The EPOCH Times.

Goldman S., Bron D., Tousseyn T., Vierasu I, et.al. (2021, Nov.). Rapid progression of angioimmunoblastic T cell lymphoma following BNT162b2 mRNA vaccine booster shot: a case report. Front Med (Lausanne), 8, 798095.

Seneff S., & Nigh G. (2021, May). Worse than the disease? Reviewing some possible unintended consequences of the mRNA vaccines against COVID-19. International Journal of Vaccine Theory, Practice, and Research, 2(1), 38-79.

Furer V., Zisman D., Kibari A., Rimar D., et.al. (2021, Oct.). Herpes zoster following BNT162b2 mRNA COVID-19 vaccination in patients with autoimmune inflammatory rheumatic diseases: a case series. Rheumatology (Oxford), 60(S1), S190-95.

Huppert J. (2022, April). Adolescents with vulvar ulcers: COVID-19 disease, COVID-19 vaccines, and the value of case reports. J Pediatr Adolesc Gynecol, 35(2), 109-11.

Liu W., Zhao M., Liu K., Xu K., et.al. (2017, Jan.). T-cell immunity of SARS-CoV: implications for vaccine development against MERS-CoV. Antiviral Res, 137, 82-92.

Hennings V., Thorn K., Albinsson S., Lingblom C., et.al. (2022, May). The presence of serum anti-SARS-CoV-2 IgA appears to protect primary health care workers from COVID-19. Eur J Immunol, 52(5), 800-09.

Tseng H., Ackerson B., Bruxvoort K., Sy L., et.al. (2022, Oct.). Effectiveness of mRNA-1273 against infection and COVID-19 hospitalization with SARS-CoV-2 Omicron sub variants: BA.1, BA.2, BA.2.12.1, BA.4, and BA.5. MedRxiv.

Gazit S., Shlezinger R., Perez G., Lotan R., et.al. (2021, Aug.). Comparing SARS-CoV-2 natural immunity to vaccine-induced immunity: reinfections versus breakthrough infections. MedRxiv.

Singanayagam A., Hakki S., Dunning J., Madon K., et.al. (2022, Feb,). Community transmission and viral load kinetics of the SARS-CoV-2 delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: a prospective, longitudinal, cohort study. The Lancet, 22(2), 183-95.

Chau N., Ngoc N., Nguyet L., Quang V., et.al. (2021, Oct.). Transmission of SARS-CoV-2 Delta variant among vaccinated healthcare workers, Vietnam. The Lancet.

Hetemaki I., Kaariainen S., Alho P., Mikkola J., et.al. (2021, July). An outbreak caused by the SARS-CoV-2 Delta variant (B.1.617.2) in a secondary care hospital in Finland, May 2021. Euro Surveill, 26(30), 2100636.

Humphries S., & Bystriank R. (2013). Dissolving Illusions: Disease, Vaccines, and the Forgotten History. CreateSpace Independent Publishing.

Riemersma K., Haddock L., Wilson N., Grogan B., et.al. (2022, Sept..). Shedding of infectious SARS-CoV-2 despite vaccination. PLoS Pathogens.

Bohnert J., Ulm L., Hübner N.O., Seifert U., et.al. (2022, April). The epidemiological relevance of the COVID-19-vaccinated population is decreasing after booster vaccination, as shown by incidence rate ratios. The Lancet, 16, 100372.

Lyons-Weiler J., & Thomas P. (2020, Nov.). Relative incidence of office visits and cumulative rates of billed diagnoses along the axis of vaccination. Int J Environ Res Public Health, 17(22), 8674.

Lyons-Weiler J., & Blaylock R. (2022, Sept.). Revisiting excess diagnosis of illness and conditions in children whose parents provided informed permission to vaccinate them. International Journal of Vaccine Theory, Practice, and Research, 2(2), 603-18.

Institute for Pure and Applied Knowledge. (2022, Sept.). New study supports conclusion of retracted 2020 study showing unvaxxed kids healthier than vaxxed. The Defender.

London Observer. (2004, April). Young children and babies used as lab rats in drug trials.

New York Post. (2004, Feb.). AIDS tots used as "guinea pigs."

Solomon J. (2005, May). Feds tested AIDS drugs on foster kids.

Berenson A., Harris G., Meier B. (2004, Nov.). Despite warnings, drug giant took long path to Vioxx recall. The New York Times.

Prakash S., & Valentine V. (2007, Nov.). Timeline: the use and fall of Vioxx. NPR.

Llamas M. (2022, June). Pfizer. Drugwatch.com

Department of Justice, Office of Public Affairs. (2009, Sept.). Justice Department announces largest health care fraud settlement in its history - Pfizer to pay \$2.3 billion for fraudulent marketing.

James E., Bokemper S., Gerber A., Omer S., Huber G. (2021, Dec.). Persuasive messaging to increase COVID-19 vaccine uptake intentions. Vaccine, 39(49), 7158-65.

Paul R., Scott, Johnson, Hawley, Lankford. (2022). Letter to Lawrence Tabak, acting director of the National Institutes of Health.

Elango C., Devaraj S. (2010, Dec.). Immunomodulatory effect of hawthorn extract in an experimental stroke model. Journal of Neuroinflammation, 7, 97.

El Shelby D., Mohammed M., Abraham N., et.al. (2022, Jan.). The emerging therapeutic role of some pharmacological antidotes in management of COVID-19. Egypt J Bronchol, 16(1), 5.

Choubey A., Dehury B., Kumar S., et.al. (2022, Feb.). Naltrexone a potential therapeutic candidate for COVID-19. J Biomol Struct Dyn, 40(3), 963-70.

Kreiser T., Zaguri D., Sachdeva S., et.al. (2022, March). Inhibition of respiratory RNA viruses by a composition of ionophoric polyphenols with metal ions. Pharmaceuticals (Basel), 15(3), 377.

Yasui Y., Yasui H., Suzuki K., et.al. (2020, Sept.). Analysis of the predictive factors for a critical illness of COVID-19 during treatment - relationship between serum zinc level and critical illness of COVID-19. Int J Infect Dis, 100, 230-36.

Huang Z., Liu Y., Qi G., et.al. (2018, Sept.). Role of vitamin A in the immune system. J Clin Med, 7(9), 258.

Cohut M. (2019, Feb.). How sleep can boost your body's immune response. Medical News Today

Sylvest V. (1999). The Formula: Who Gets Sick, Who Gets Well, Who is Unhappy, Who is Happy, and Why. Sunstar Publishing Ltd.

Weatherly L, & Gosse J. (2017). Triclosan exposure, transformation, and human health effects. J Toxic Environ Heath B Crit Rev, 20(8), 447-69.

Geddes L. (2009). Friendly bacteria keep your skin's defenses in check. New Scientist.

DeFlora S., Balansky R., LaMaestra S. (2021, March). Antioxidants and COVID-19. J Prev Med Hyg, 62(1 Suppl 3), E34-45.

Notarbartolo V., Montante C., Ferrantee G., Giuffre M. (2022, Aug.). Antioxidant effects of dietary supplements on adult COVID-19 patients: why do we not also use them in children? Antioxidants (Basel), 11(9), 1638.

Campi I., Gennari L., Merlotti D., et.al. (2021, June). Vitamin D and COVID-19 severity and related mortality: a prospective study in Italy. BMC Infect Dis, 21(1), 566.

Dror A., Morozov N., Daoud A., et.al. (2022, Feb.). Pre-infection 25-hydroxyvitamin D3 levels and association with severity of COVID-19 illness. PLoS One, 17(2), e0263069.

Merzon E., Tworowski D., Gorohovski A., et.al. (2020, Sept.). Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: an Israeli population-based study. FEBS J, 287(17), 3693-702.

Lau F., Majumder R., Torabi R., et.al. (2020). Vitamin D insufficiency is prevalent in severe COVID-19. MedRxiv.

Arvinte C., Singh M., Marik P. (2020, Dec.). Serum levels of vitamin C and vitamin D in a cohort of critically ill COVID-19 patients of a North American community hospital intensive care unit in May 2020: a pilot study. Med Drug Discov, 100064.

Drake V. (2017). Micronutrient inadequacies in the US population: an overview. Linus Pauling Institute, Oregon State University.

Jack A. (2005). America's vanishing nutrients: decline in fruit and vegetable quality poses serious health and environmental risks.

Johns Hopkins Medical Institutions. (2003). Daily vitamins could prevent vision loss among thousands.

Bender D. (2002). Introduction to Nutrition and Metabolism, 3rd Ed. CRC Press.

Tuku B., Stanelle-Bertram S., Seliau J., et.al. (2020, April). Testosterone protects against severe influenza by reducing the pro-inflammatory cytokine response in the murine lung. Front Immunol.

Khorram O, Vu L., Yen S. (1997, Jan.). Activation of immune function by dehydroepiandrosterone (DHEA) in age-advanced men. Clinical Trial, 52(1), M1-7.

Shah S. (2021, Dec.). COVID-19 and progesterone: part 1. SARS-CoV-2, progesterone and its potential clinical use. Endocr Metab Sci, 5, 100109.

Shah S. (2021, Dec.). COVID-19 and progesterone: part 2. Unraveling high severity, immunity patterns, immunity grading, Endocr Metab Sci, 5, 100110.

Al-Lami R., Urban R., Volpi E., et.al. (2020, Aug.). Sex hormones and novel corona virus infectious disease (COVID-19). Mayo Clinic.

Murugan S., Jakka P., Namani S., et.al. (2019, March). The neurosteroid pregnenolone promotes degradation of key proteins in the innate immune signaling to suppress inflammation. J Biol Chem, 294(12), 4596-607.

National Center for Health Statistics. (2020, Dec.). Conditions contributing to deaths involving COVID-19, by age group, United States. Week ending 2/1/2020 to 12/5/2020.

Warburton D., Nicol C, Bredin S. (2006, March). Health benefits of physical activity: the evidence. CMAJ, 174(6), 801-09.

Zhou Y., Hou Y., Shen J., et.al. (2020. Nov.). A network medicine approach to investigation and population-based validation of disease manifestations and drug repurposing for COVID-19. PLoS.

Reiter R., Mayo J., Tan D., et al. (2016, Aug.). Melatonin as an antioxidant: under promises but over delivers. Journal of Pineal Research.

Cross K., Landis D., Sehgal L., Payne J. (2021 Aug.). Melatonin for the early treatment of COVID-19: a narrative review of current evidence and possible efficacy. Endocr Pract, 27(8), 850-55.

Williams D., & Sternthal M. (2007, May). Spirituality, religion and health: evidence and research directions. Med J Aust, 186(10), S47.

Horne B., May H., Muhlestein J., et.al. (2022, July). Association of periodic fasting with lower severity of COVID-19 outcomes in the SARS-CoV-2 pre vaccine era: an observational cohort from the INSPIRE registry. BMJ Nutrition, Prevention & Health, e000462.

Sutton E., Beyl R., Early K., et.al. (2018, June). Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab, 27(6), 1212-21.

Marinac C., Sears D., Natarajan L., et.al. (2015, Aug.). Frequency and circadian timing of eating may influence biomarkers of inflammation and insulin resistance associated with breast cancer risk. PLus One, 10(8), e0136240.

Zimeri A., Robb S., Hassan S., et.al. (2015, Dec.). Assessing heavy metal and PCB exposure from tap water by measuring levels in plasma from sporadic breast cancer patients, a pilot study. Int J Environ Res Public Health, 12(12), 15683-91.

Felton R., Gill L., Kendall L. (2021, March). We sampled tap water across the US - and found arsenic, lead and toxic chemicals. The Guardian.

Ferrer J., Kenyon S., Gupta P. (1981, Aug.). Milk of dairy cows frequently contains a leukemogenic virus. Science, 213(4511), 1014-16

Frosh A., Cruz C., Wellsted D., Stephens J. (2018, Sept.). Effect of dairy diet on nasopharyngeal mucus secretion. Laryngoscope, 129(1), 13-17.

Chen Z., Zuurmond M., van der Schaft N., et.al. (2018, Sept.). Plant versus animal based diets and insulin resistance, prediabetes and type 2 diabetes: the Rotterdam study. Eur J Epidemiol, 33(9), 883-93.

Quesada L., Fernandez-Fradejas J., Martinez Barros H., et.al. (2022).5PSQ-042 toxicity of remdesivir as treatment of non-critically ill COVID-19 patients. Eur J Hosp Pharm, 29, A132.

Wu B., Luo M., Wu F., et.al. (2022, March). Acute kidney injury associated with remdesivir: a comprehensive pharmacovigilance analysis of COVID-19 reports in FAERS. Frontiers in Pharmacology, 13.

Nabati M., & Parsaee H. (2022, March). Potential cardiotoxic effects of remdesivir on cardiovascular system: a literature review. Cadiovasc Toxicol, 22(3), 268-72.

O'Toole Z., & Holland M., editors. (2022). Turtles All The Way Down - Vaccine Science and Myth. Children's Health Defense Publishing.

Mogensen S., Andersen A., Rodrigues A., et.al.(2017, Feb.). The Introduction of Diphtheria-Tetanus-Pertussis and Oral Polio Vaccine Among Young Infants in an Urban African Community: A Natural Experiment.. EBiMedicine

Ross L., and Klompas M. (2010). Electronic Support for Public Health - Vaccines Adverse Event Reporting System (ESP:-VAERS). Report submitted to The Agency for Healthcare Research and Quality, U.S. Department of Health and Human Services.

Cohen S. (2021). Psychosocial Vulnerabilities to Upper Respiratory Infectious Illness: Implications for Susceptibility to Coronavirus Disease 2019 (COVID-19). Perspectives on Psychological Science, 16(1), 161-74.

Shitrit P., Zuckerman N., Mor O., et.al. (2021, Sept.). Nosocomial Outbreak Caused by the SARS-CoV-2 Delta Variant in a Highly Vaccinated Population, Israel, July 2021. Eurosurveillance, 26(39).

Martin D. The Fauci/COVID-19 Dossier.

Ladapo J. (2022). Guidance for mRNA COVID-19 Vaccines.

Ladapo J. (2022). Exploring the Relationship Between All-Cause and Cardiac-Related Mortality Following COVID-19 Vaccination or Infection in Florida Residents: A Self-Controlled Case Series Study.

Rubik B., and Brown R. (2021, Sept.). Evidence for a Connection Between Coronavirus Disease 19 and Exposure to Radiofrequency Radiation from Wireless Communications Including 5G. J Clin Transl Res, 7(5), 666-81.

Adams M. (2022, Aug.). Exclusive: Natural News Releases Post-Vaccine Clot ICP-MS Elemental Analysis Results, Comparing Clots to Human Blood...Findings Reveal These Clots are NOT "Blood" Clots. Natural News

Classen J. (2021). COVID-19 RNA Based Vaccines and the Risk of Pion Disease. Microbial Infect Dis, 5(1), 1-3.

De Michele M., Kahan J., Berto I., et.al. (2022, April). Cerebrovascular Complications of COVID-19 and COVID-19 Vaccination. Circ Res, 130(8), 11887-1203.

Gundry S. (2021, Nov.). Abstract 10712: Observational Findings of PULS Cardiac Test Findings for Inflammatory Markers in Patients Receiving mRNA Vaccines. Circulation, 144, A10712

Subramanian S.and Kuman A. (2021). Increases in COVID-19 are Unrelated to Levels of Vaccination Across 68 Countries and 2947 Counties in the United Stated. Eur J Epidemiol, 36(12), 1237-40.

Burdick S. (2022, Sept.). Hospital Pulls Ad After Critics Complain it "Normalized" Myocarditis in Kids. The Defender

Cedars-Sinai Medical Center. (2022, July). Hypertension Elevates Risk for More Severe COVID-19 Illness, Even After a Booster...Science News

Lyke K., Atmar R., Dominguez Islas C., et.al. (2022, July). Rapid Decline in Vaccine-Boosted Neutralizing Antibodies Against SARS-CoV-2 Omicron Variant. Cell Reports Medicine, 3(7), 100679

Michigan Medicine - University of Michigan. (2022, June). Children in Remote School Faced More Sleep, Behavior and Social Challenges. Science Daily

Verkerk R. (2022, Feb.). 6 Big Differences Between Natural Vs. Vaccine-Induced Immunity. The Defender

Agrawal V., Cantor J., Sood N., Whaley C. (2022, Sept.). The Impact of the COVID-19 Pandemic and Policy Responses on Excess Mortality. National Bureau of Economic Research.

Merino J., Joshi A., Nguyen L., et.al. (2021). Diet Quality and Risk and Severity of COVID-19: A Prospective Cohort Study. Gut, 70, 2096-2104.

King's College London. (2021, Aug.). Long COVID Uncommon in Children, Analysis Finds. Science Daily

Molten E., Sudre C., Canas L., et.al. (2021, Oct.). Illness Duration and Symptoms Profile in Symptomatic UK School-Aged Children Tested for SARS-CoV-2. The Lancet, 5(10), 708-18.

Bhandari T. (2021, May). Mild COVID-19 Induces Lasting Antibody Protection, Study Finds. Science Daily.

Turner J., Kim W., Kalaidina E., et.al. (2021, May). SARS-CoV-2 Infection Induces Long-Lived Bone Marrow Plasma Cells in Humans. Nature, 595, 421-25

Xiao J., Shiu E., Gao H., et.al. (2020, May). Nonpharmaceutical Measures for Pandemic Influenza in Nonhealthcare Settings - Personal Protective and Environmental Measures. Emerg Infect Dis, 26(5), 967-75.

Da Zhou C., Sivathondan P., Handa H. (2015, June). Unmasking the Surgeons: The Evidence Base Behind the Use of Facemasks in Surgery. J R Soc Med, 108(6), 223-28.

Beder A., Buyukkocak U., Sabuncuoglu H., et.al. (2008, April). Preliminary Report on Surgical Mask Induced Deoxygenation During Major Surgery. Neurocirugia, 19(2), 121-26.

Lukashev D., Klebanov B., Kojima H., et.al. (2006, Oct.). Cutting Edge: Hypoxia-Inducible Factor 1-alpha and Its Activation-Inducible Short Isoform Negatively Regulate Functions of CD4+ and CD6+ T Lymphocytes. J Immunol, 177(8), 4962-65.

Deruelle F. (2022). The pharmaceutical industry is dangerous to health. Further proof with COVID-19. Surg Neurol Int, 13, 475.

Guetzkow J. (2023, Jan.) Here's the COVID vaccine injury report CDC was forced to release. The Defender. https://childrenshealthdefense.org/defender/cdc-vaers-covid-vaccines-serious-injuries/?utm_source=salsa&eType=EmailBlastContent&eId=fa-6589fa-9991-4b1c-82b6-5719a71b7067

Centers for Disease Control and Prevention. How to access VAERS data through VAERS WONDER system (VAERS data on vaccines, including COVID shots). https://www.cdc.gov/vaccinesafety/ensuringsafety/monitoring/vaers/access-VAERS-data.html

